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be obtained for a fairly wide class of types of non-uniformity of the medium, and effects related to the
non-uniformity are investigated analytically. A procedure for calculating the displacement, stress and
strain fields is described. Particular attention is devoted to analysing the mechanical characteristics in the
transition region from the coating to the elastic substrate.
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Non-uniform coatings with elastic properties that vary smoothly with depth, so-called gradient (or functionally gradient) coatings,
enable one to avoid stress concentrations in the region where the coating adjoins the elastic substrate, and hence the use of such coatings
is one of the promising areas in tribology. However, mathematical models of multilayered materials developed previously do not describe
functionally gradient coatings sufficiently accurately,'-3 and both quantitative and qualitative differences are observed in the behaviour of
functionally gradient materials compared with uniform or multilayered materials.

Among the non-uniform coatings with elastic properties that vary smoothly with depth, functionally gradient coatings, in which the
gradient of the change in the elastic properties changes sign along one of the coordinates, are of particular interest. An example are
coatings, the stiffness of which is a maximum on the surface and decreases with depth to a certain value, and then, inversely, increases
as one approaches the substrate (coatings with a non-monotonic change of the elastic properties with depth). In view of the complexity
of the mathematical modelling of media whose properties vary continuously along at least one coordinate, in the majority of existing
publications in most cases it is multilayered materials (or piecewise-uniform materials) that have been investigated.

The solution of contact problems for a functionally gradient half-space with an arbitrary variation of the non-uniformity with depth was
constructed in Refs 4-9 using a bilateral asymptotic method. It was proved in Ref. 10 that the approximate analytical solution constructed
is an asymptotically accurate solution of the initial equation both for small and large values of the characteristic geometrical parameter of
the problem.

Our attention will be concentrated on analysing the fields of elastic displacements and stresses, in particular, on investigating the effect
of a change in the elastic properties of the material on the internal stresses in the surface layers of a material with a multilayered or
functionally gradient coating when indented. The methods employed give stable numerical results for different forms of multilayered and
functionally gradient materials.

The stresses inside the material have a different form depending on the extent to which the elastic properties of the coating differ from
those of the base or from the gradient of the elastic properties in a functionally gradient material. For example, it was shown in Refs 11 and
12 that, for certain materials and operating conditions, the highest tensile stresses occur in the region where the coating and the substrate
are in contact, rather than on the surface of the coating.

In this paper we analyse the mechanical characteristics of functionally gradient materials in the transition region from the coating to
the elastic substrate, including for contact-interaction problems.
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1. Formulation of the boundary-value problem for a half-space, continuously non-uniform in depth for forces specified on its
surface

We will consider an elastic half-space, the elastic characteristics of which vary continuously with depth in a layer of thickness H adjacent
to the surface, and are then stabilized and remain constant. We connect a cylindrical system of coordinates (r, ¢, z) with the half-space. We
will assume that the forces adjacent to the half-space are produced either by the action of a punch, having the shape of a convex solid of
revolution, or by a force p(r), distributed inside a circle of radius a, and hence are symmetrical about the coordinate axes (Fig. 1). Hence, the
displacements, strains and stresses are independent of the angular coordinate ¢. We will also assume that the Lamé coefficients M =M(z)
and A = A(z), connected with Young’s modulus E and Poisson’s ratio v by the relations

_E A - Ev . g o MEM+3A) A
T 2(1+v) T (L+v)(1=2v) T M+A T 2(M+A)

vary with depth in the surface layer of thickness H, and remain constant when z < —H

M(z) = M(-H) = M, A(z) = A(-H) = A’, —w<z<-H

M(z) = M(2), A(z) = A°(z), -H<z<0

M('(_H) - MS, A((—H) - As

minA(z) 2A* >0, maxA(z) SA* <o, minM(z)2M* >0, maxM(z) SM* < (1)

The minimum and maximum are taken when z € (—oo, 0). The superscript s corresponds to the underlying uniform half-space, while the
superscript c corresponds to the non-uniform layer, and A*, A* M- and M* are constants.
In this case the equilibrium equations have the form

a a rz _ a acz — a 2 2at(p:
a—r(rc,)+r 3z -0, =0, E;‘(rr’:)+r8_z =0, 8_r(r T,.)+r e 0 (12)

The first two equations of system (1.2) describe the axisymmetric stress state, which occurs, for example, due to the action of a load
normal to the surface, while the last equation is the equilibrium equation of the half-space, twisted by the shear force.
Using Hooke’s law, we can write the relation between the elastic stresses and the displacements in the form

o _ ot _ Iw _ Ju, u, ow
O, = 2Mz7+ A8, 0, = IMZ+ A8, 0. = IM()5-+AB, 6 = o+ 2+ =
o (du dw _ MOV v VA
e ME ) M5 -D) - M3 (13)

Using the formulae relating the components of the strain and stress tensors in the axisymmetric problem, we obtain the following
system of Lamé equations

Z
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Fig. 1.
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As described above, a surface load is applied in a limited region, namely inside a circle of radius a. We will consider the case of an
arbitrary load, normal to the surface z=0

-p(r), 0<r<a,
z=0:0,r0) = T,.(r,0) =0, 0<r<e
0, a<r<oo, - (15)

At the boundary of the non-uniform layer with the uniform half-space, when z=—H, the following displacement and stress matching
conditions must be satisfied

oi(r,—H)
H: ~

Il

o.(r,-H), 7T,(r,-H) = 1, (r,~H)
Z=—
u'(r,-H) = u'(r,-H), w'(r,-H) = w'(r,-H) (16)

When (r, —z) — oo the displacements, strains and stresses disappear.

Hence, we have formulated the following Neumann problem for a non-uniform half-space: it is required to find the displacements,
strains and stresses in a half-space, satisfying Eqs (1.4), the specified distribution of the forces at the boundary (1.5) and (1.6) and the
condition of attenuation at infinity.

2. Construction of the fundamental solution for a half-space, non-uniform in depth
We will find a solution for the displacements u and w in the form of Hankel integrals

u(r,2) = =[UL D (vdy. wirnz) = [W(y 2oy
0 0 (2.1)

We substitute these expressions into system (1.4) and equate the integrands to zero. We obtain a system of ordinary differential equations,
which we can write in matrix form using the vector representation for the transformant

T ‘
X = (X,XX3,%), X, =U, xo=U0, x3=W, x, =W

clearly separating the parts corresponding to the non-uniform surface layer and the uniform base:
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K = 142M/(M+A), 1 = M/M = E/E (23)
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Boundary conditions (1.5) and (1.6) take the form
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0

We will write the general solution of system (2.3) for a uniform half-space

z€-H, M=A"=0, M>0, A>0

as follows:

X1(Y,2) = (dy+vyzdy)e”, x3(v,2) = (d, + (1 +y2)d,)ye”
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where dy and d, are arbitrary functions of the parameter .
Using the method of modulating functions,!3 we seek a solution of system (2.2) in the form

X(7,2) = d,(Y)a, (v, 2)e" +dy(y)ay(y, 2)e”

The vectors a; (v, z), ax(*y, z) are found from the solution of the Cauchy problems
da

d—z" = A‘a;—vya, —-H<z<0, i=1,2
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(2.6)

(2.7)

The constants d; and d; are found from conditions (2.4), where ag‘(y, z)(k=1,2, 3, 4) is the k-th component of the vector ag;(v, z) (i=1,2).

We have

di(Y) = PEYMy(NA™, dy(y) = —PH(Y)M,(Y)A”
A = My(Y)N,(Y) = M,(Y)No(Y), P*(y) = —P(y)/(2M(0) + A(0))

3- k
N = (1, 0) - =¥ (1,00, My(¥) = a;(1, 0) +Ya, (¥, 0)

We finally obtain the following expressions for the components of the vector x(-y, z) when H <z <0

I

(1, 2) = PXATA (L e, k= 1,4

A1, 2) = My(y)al(v, 2) - M, ()d5(v, 2)

We introduce the following notation

oo oo

Lin = Tin(r:2) = [ DT, (00 Ly = Liy(r,2) = [x(r, 2,07 dy
0 0

(2.8)

Then, using formulae (1.3) and (2.1), the distribution of the displacements, strains and stresses for a half-space, non-uniform in depth,

when an arbitrary asymmetric load acts on its surface, can be represented in the form

u(r,z) = =1y, w(r,z) = Iy

g(r,z) = _1:0+1r1”(r’2)’ e(r,2) = Iy, €y(r,2) = —%110’ €&, = _%(121 + 1)
c,(r,z) = 1—2_%(\/140—(1 —v)I:O+%1“)

6.(r,2) = 12_%((1 + 2v)%1,, +V(140(r,z)—~110))

Cy(r,2) = %((1 —V)140—V110), T,.(r,2) = _M(121+1;l)

(2.9)
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3. Numerical analysis of the solution for some characteristic distributions of Young’s modulus

The values of the components of the displacement, strain and stress fields are constructed using numerical integration from formulae
(2.9) at specified points (r, z) of a half-space non-uniform in depth. The infinite region of integration with respect to vy is split into sections
in which the integrand has constant sign. The functions L(+y, z) can change sign for -y and z close to zero, and then tend monotonically
to zero, so that the roots of the integrand in relations (2.9) are identical with the roots of Bessel functions, which are easily determined.
The calculation is carried out until the modulus of the increment of the function exceeds a specified (fairly small) value. Hence, we can
integrate by withdrawing a certain distance from the boundary of the half-space. On the boundary itself the solution is sought by the
method described earlier in Ref. 4.

We will consider numerical examples for some characteristic forms of non-uniformity of the base. Poisson’s ratio will be assumed to be
constant: v=1/3, and Young’s modulus in the non-uniform coating will be assumed to vary with depth as given by the following relations
(Fig. 2)
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An analysis of the numerical functions yx,(7y, z) - the transformant of the kernel of integral equations (2.8) — shows that yx,(y,z) # 0
for y>100, and the procedure for the numerical construction of yx,(vy, z) when «y>100 must be continued up to the necessary level of
accuracy. Moreover, the functions yx1(y, z) and yx, (', z) change sign when y and Z change. It is well known that a Bessel function decreases

as y‘l/z as y — oo, and hence for small z and 7 = r/a and large A\ it is difficult to make an accurate calculation of the integrals in expressions
(2.8) for the functions yx{(vy, z) and yxx(vy, z).

It was mentioned in Ref. 14 that A. N. Dinnik, when developing the Hertz problem, analysed the distribution of elastic deformations
of the sample along the direction of indentation of an axisymmetric punch. He summed the elementary deformations deeply from the
surface of the sample and found discrete values of the sums for fixed thicknesses H of the surface layer, normalized to the radius of the
contact area a. The ratio of this total deformation wy to the experimentally recorded value of w, which summed the deformation over the
whole depth of the half-space, turned out to be equal to 0.937 at a depth of 10a and 0.970 at a depth of 20a.

In Fig. 3 we show graphs of wy /w for n=1, 2, 3, 4, for the forms of non-uniformity (3.1). The dashed curve corresponds to the case of a
uniform medium.

In Fig. 4 we show the distributions of the intensity of the deviator stresses

o
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0y = 04(12), Oy = [0,(7,2)+0,(7, 2) £ J(0,(F, 2) + 6.(F, 7)) + 4747, 2) 112

It can be seen that the case n =4 represents a softer coating, with a smoothly increasing value of Young’s modulus with depth. The case n=5
is also interesting; for this value there is no stress concentration in the transition zone from the non-uniform surface layer to the uniform
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base. Note also that in the case when n=6 the maximum of the intensity of the deviator stresses, as might have been expected, is inside
the coating, unlike all the cases considered.
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